
On the infinite Series

1 + αβ
1·γx + α(α+1)β(β+1)

1·2·γ(γ+1) xx +
α(α+1)(α+2)β(β+1)(β+2)

1·2·3·γ(γ+1)(γ+2) x3 + etc. - Part Two*

Carl Friedrich Gauss

38.

For the sake of brevity setting F(α, β, γ, x) = P by art. 4 we have

dP
dx

=
αβ

γ
F(α + 1, β + 1, γ + 1, x)

and hence differentiating again

ddP
dx2 =

αβ(α + 1)(β + 1)
γ(γ + 1)

F(α + 2, β + 2, γ + 2, x)

Hence equation IX of art. 10 yields

[80] αβP− (γ− (α + β + 1)x)
dP
dx
− (x− xx)

ddP
dx

This differential equation of second order can be considered as more exact
definition of our function; but since P = F(α, β, γ, x) is not the complete
integral but only a particular solution (since it does not contain any new

*Original Title: „Circa seriem infinitam 1+ αβ
1·γ x+ α(α+1)β(β+1)

1·2·γ(γ+1) xx+ α(α+1)(α+2)β(β+1)(β+2)
1·2·3·3γ(γ+1)(γ+2) x3 +

etc. - Pars secunda“, actually taken from Gauß’s "Nachlass"the work has no official title but
is clearly intended as a sequel to Gauß’s first paper on the hypergeometric series; reprinted
in „Carl Friedrich Gauß Werke: Volume 3 pp. 207 - 229“, translated by: Alexander Aycock for
the project „Euler-Kreis Mainz“
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constants), one has to add the condition that P starts from the value 1 for
x = 0 and for the same value of x dP

dx = αβ
γ and ddP

dx2 = αβ(α+1)(β+1)
γ(γ+1) .

So each value of x, to which you get step by step from the value x = 0,
nevertheless in such a way that you to not reach the value x = 1, for which
x− xx = 0, P will be determined completely; but obviously this way you can
only get to a real positive values of x larger than 1 by going through imaginary
values, since which can be done in infinitely many different ways and without
prejudice of continuity, it will hence not be plain, whether to the same value
x several, or even infinitely many, discrete values of P correspond, as it is
known to happen in many more common transcendental functions. But let us
keep the discussion about this for later, since here mainly the case, where x is
taken below or at least not beyond 1, is considered and P is considered equal
to the series F(α, β, γ, x).

39.

Writing 1− y for x in equation 80, it goes over into this one

0 = αβP− (α + β + 1− γ)− (α + β + 1)y)
dP
dy
− (y− yy)

ddP
dy2

which has a similar form. Hence immediately another particular integral
follows

P = F(α, β, α + β + 1− γ, y) = F(α, β, α + β + 1− γ, 1− x)

whence by known principles the complete integral of equation 80 follows,

[81] P = MF(α, β, γ, x) + NF(α, β, α + β + 1− γ, 1− x)

while M and N denote arbitrary constants.
Furthermore, we observe here that the following more general equation can
easily be reduced to the form of equation 80

0 = AP + (B + Cy)
dP
dy

+ (D + Ey + Fyy)
ddP
dy2

For, having taken the roots of the equation 0 = D + Ey + Fyy, they are y = a,
y = b or D + Ey + Fyy is equal to the product F(y− a)(y− b) and, setting
y−a
b−a = x and determining α, β, γ so that

2



αβ =
A
F

, α + β + 1 =
C
F

, γ = − B + aC
F(b− a)

it is plain that the initial equation goes over into equation 80.

40.

By means of the differential equation 80 it is possible to find many most
memorable theorems on our series, first general ones, then more special ones,
and there is no doubt that still many more and more important ones are to be
discovered, but they require more advances techniques. We will now present,
what we were able to discover.
Let us set P = (1− x)µP′ and it will be

dP
dx

= −µ(1− x)µ−1P′ + (1− x)µ dP′

dx
ddP
dx2 = µ(µ− 1)(1− x)µ−2P′ − 2µ(1− x)µ−1 dP′

dx
+ (1− x)µ ddP′

dx2

Having substituted these values in equation 80, dividing by (1− x)µ, it results

0 = P′ {αβ(1− x) + (γ− (α + β + 1)x)µ− x(µµ− µ)}

−dP′

dx
{(g− (α + β + 1)x)− 2µx} (1− x)− ddP′

dx2 {x− xx} (1− x)

Let us determine µ in such a way that the multiplicator of P′ is divisible by
1− x, what will happen either by setting µ = 0 or µ = γ− α− β. The first
assumption would lead to nothing new, but the second value gives

0 = P′ {αβ− αγ− βγ + γγ}− dP′

dx
{γ− ((γ− α) + (γ− β) + 1)x}− ddP′

dx2 (x− xx)

which has completely the same form as equation 80. Therefore, since for x = 0
obviously P′ = 1 and dP′

dx = αβ
γ − µ = (γ−α)(γ−β)

γ , it is plain that its integral is
P′ = F(γ− α, γ− β, γ, x) so that one has in general

[82] F(γ− α, γ− β, γ, x) = (1− x)α+β−γF(α, β, γ, x)
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Hence one has to derive the transformation of the series

1 +
2 · 8

9
x +

3 · 8 · 10
9 · 11

xx +
4 · 8 · 10 · 12

9 · 11 · 13
x3 + etc. = F

(
2, 4,

9
2

, x
)

into

(1− x)−
3
2

(
1 +

1 · 5
2 · 9 x +

1 · 3 · 5 · 7
2 · 4 · 9 · 11

xx + etc.
)
= (1− x)−

8
2 F
(

5
2

,
1
2

,
9
2

, x
)

which we indicated in the Ephemeridibus Astronomicis Berolinensibus 1814
p. 257 [Addendum to Art. 90 and 100 of the Theoria motus] without a proof.

41.

Further, let us set P = xµP′ so that

dP
dx

= µxµ−1P′ + xµ dP′

dx
ddP
dx2 = (µµ− µ)xµ−2P′ + 2µxµ−1 dP′

dx
+ xµ ddP′

dx2

having substituted which values in 80, dividing by xµ−1 we find

0 = P′ {αβx− (γ− (α + β + 1)x)µ− (1− x)(µµ− µ)}

−dP′

dx
{γ− (α + β + 1)x + 2µ(1− x)} x

−ddP′

dx2 (xx− x3)

The multiplicator of P′ in this formula becomes divisible by x setting µ = 0 or
µ = 1− γ; the second value gives

0 = P′(αβ + α + β + 1− 2γ− αγ− βγ + γγ)

−dP′

dx
(2− γ− (α + β + 3− 2γ)x)

−ddP′

dx2 (x− xx)
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Comparing this equation to 80, whose form is completely the same, it is plain
that what was P, α, β, γ there is P′, α + 1− γ, β + 1− γ, 2− γ here: Therefore,
since we assigned the complete integral of that equation, it is obvious that P′

will be contained in the formula

P′ = MF(α + 1− γ, β + 1− γ, 2− γ, x)

+NF(α + 1− γ, β + 1− γ, α + β + 1− γ, 1− x)

while M, N denote constant quantities, or

[83] F(α, β, γ, x) = Mx1−γF(α + 1− γ, β + 1− γ, 2− γ, x)

+Nx1−γF(α + 1− γ, β + 1− γ, α + β + 1− γ, 1− x)

where the constants M, N will depend on the elements α, β, γ.

42.

From equation 82 it follows

F(α + 1− γ, β + 1− γ, 2− γ, x) = (1− x)γ−α−βF(1− α, 1− β, 2− γ, x)

F(α + 1− γ, β + 1− γ, α + β + 1− γ, 1− x) = xγ−1F(α, β, α + β + 1− γ, 1− x)

whence setting

1
N

= f (α, β, γ),
M
N

= g(α, β, γ)

equation 83 becomes

F(α, β, α + β + 1− γ, 1− x)

= f (α, β, γ)F(α, β, γ, x)

+g(α, β, γ)(1− x)γ−α−βx1−γF(1− α, 1− β, 2− γ, x)

By means of formula 82 the same equation can also cast into this form

x1−γF(α + 1− γ, β + 1− γ, α + β + 1− γ, 1− x) =

f (α, β, γ)(1− x)γ−α−βF(γ− α, γ− β, γ, x) + g(α, β, γ)x1−γF(α + 1− γ, β + 1− γ, 2− γ, x)
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or dividing by x1−γ and changing α, β, γ into α + 1− γ, β + 1− γ, 2− γ

respectively

F(α, β, α + β + 1− γ, 1− x)

= g(α + 1− γ, β + 1− γ, 2− γ)F(α, β, γ, x)

+ f (α + 1− γ, β + 1− γ, 2− γ)(1− x)γ−α−βx1−γF(1− α, 1− β, 2− γ, x)

43.

Now to find the nature of the function f (α, β, γ), let us set x = 0. Then it is
clear that F(α, β, γ, x) = 1, x1−γ = 0, if 1− γ was a positive quantity, of course.
But by equation 48 we have

F(α, β, α + β + 1− γ, 1) =
Π(α + β− γ)Π(−γ)

Π(α− γ)Π(β− γ)

Therefore, under the same restriction it is demonstrated that

[85] f (α, β, γ) =
Π(α + β− γ)Π(−γ)

Π(α− γ)Π(β− γ)

That this formula is indeed general is proven as follows. Differentiating
equation 84 it results

− αβ

α + β + 1− γ
F(α + 1, β + 1, α + β + 2− γ, 1− x)

=
αβ

γ
f (α, β, γ)F(α + 1, β + 1, γ + 1, x)

+ f (α + 1− γ, β + 1− γ, 2− γ)(1− x)γ−α−β−1x−γ

×
{
((1− γ)(1− x)− (γ− α− β)x)F(1− α, 1− β, 2− γ, x)

+
(1− α)(1− β)

2− γ
(x− xx)F(2− α, 2− β, 3− γ, x)

}
But by formula IX of art. 10 changing α, β, γ into −α, −β, 1− γ
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(1− γ)(2− γ)F(−α,−β, 1− γ, x) = (2− γ)(1− γ + (α + β− 1)x)F(1− α, 1− β, 2− γ, x)

+ (1− α)(1− β)(x− xx)F(2− α, 2− β, 3− γ, x)

whence the preceding equation goes over into this one

F(α + 1, β + 1, α + β + 2− γ, 1− x)

= −α + β + 1− γ

γ
f (α, β, γ)F(α + 1, β + 1, γ + 1, x)

− (α + β + 1− γ)(1− γ)

αβ
f (α + 1− γ, β + 1− γ, 2− γ)(1− x)γ−α−β−1x−γF(−α,−β, 1− γ, x)

But changing α, β, γ into α + 1, β + 1, γ + 1 in equation 84

F(α + 1, β + 1, α + β + 2− γ, 1− x)

= f (α + 1, β + 1, γ + 1)F(α + 1, β + 1, γ + 1, x)

+ f (α + 1− γ, β + 1− γ, 1− γ)(1− x)γ−α−β−1x−γF(−α,−β, 1− γ, x)

Therefore, since it is easily seen that these two equations must be identical, in
general

f (α + 1, β + 1, γ + 1) =
α + β + 1− γ

−γ
f (α, β, γ)

or changing α, β, γ into α− 1, β− 1, γ− 1

f (α, β, γ) =
α + β− γ

1− γ
f (α− 1, β− 1, γ− 1)

=
(α + β− γ) · (α + β− γ− 1)

(1− γ)(2− γ)
f (α− 2, β, γ− 2)

etc. whence it is easily concluded that generally for each integer value of k

f (α, β, γ) =
Π(α + β− γ)Π(−γ)

Π(α + β− γ− k)Π(k− γ)
· f (α− k, β− k, γ− k)
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But if 1− (γ− k) or k + 1− γ is a positive quantity, we demonstrated that
(formula 85)

f (α− k, β− k, γ− k) =
Π(α + β− γ− k)Π(k− γ)

Π(α− γ)Π(β− γ)

Hence, since k, whatever γ is, can always assumed so large that k + 1− γ

becomes a positive quantity, it will be in general

f (α, β, γ) =
Π(α + β− γ)Π(−γ)

Π(α− γ)Π(β− γ)

and therefore

f (α + 1− γ, β + 1− γ, 2− γ) =
Π(α + β− γ)Π(γ− 2)

Π(α− 1)Π(β− 1)

so that our formula becomes

[86] F(α, β, α + β + 1− γ, 1− x)

=
Π(α + β− γ)Π(−γ)

Π(α− γ)(Π(β− γ)
F(α, β, γ, x)

+
Π(α + β− γ)Π(γ− 2)

Π(α− 1)Π(β− 1)
x1−γ(1− x)γ−α−βF(1− α, 1− β, 2− γ, x)

or having changed γ into α + β + 1− γ

[87] F(α, β, γ, 1− x)

=
Π(γ.1)Π(γ− α− β− 1)

Π(γ− α− 1)Π(γ− β− 1)
F(α, β, α + β + 1− γ, x)

+
Π(γ− 1)Π(α + β− γ− 1)

Π(α− 1)Π(β− 1)
xγ−α−β(1− x)γ−α−βF(1− α, 1− β, γ + 1− α− β, x)

If you like a more, it is possible in formula 86 to write

F(α + 1− γ, β + 1− γ, 2− γ, x) for (1− x)γ−α−βF(1− α, 1− β, 2− γ, x)
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in formula 87

F(γ− α, γ− β, γ+ 1− α− β, x) for (1− x)1−γF(1− α, 1− β, γ+ 1− α− β, x)

44.

Therefore, if in a certain series contained in our formula a value between
0.5 and 1 is attributed to the fourth element, the slow convergence can be
avoided by the preceding formulas, which split that series into two other
similar ones converging the faster the slower the initial one converged. But
one has to exclude special cases, where this transformation, if in the series to
be transformed the difference of the third element and the sum of the first
two elements is an integer number. For, if in formula 86 γ = 0 or equal to
a negative integer number, F(α, β, γ, x) obviously becomes an inept series
(art. 2) and the factor Π(γ− 2) is infinite; but if γ is an integer larger than 1,
F(1− α, 1− β, 2− γ, x) and F(α + 1− γ, β + 1− γ, 2− γ, x) become inept se-
ries and Π(−γ) becomes infinite; finally, if γ = 1, the two transformed series
F(α, β, γ, x) and F(1− α, 1− β, 2− γ, x) or F(α + 1− γ, β + 1− γ, 2− γ, x),
which becomes identical to F(α, β, γ, x), do not have this problem, but nevert-
heless the transformation is of no use, since each of both transformed series
is multiplied by the infinite coefficient Π(−1). Therefore, it will worth one’s
while to show, how even in these cases the convergence can be accelerated.

45.

Let k be a positive integer number (or even = 0) and let us denote the k + 1
first terms of the series F(α, β, γ, x) by X. The following term will be

=
α · (α + 1) · (α + 2) · · · (α + k) · β · (β + 1) · (β + 2) · · · (β + k)

1 · 2 · 3 · · · (k + 1) · γ · (γ + 1) · (γ + 2) · · · (γ + k)
xk+1

and in like manner the following terms. Hence it is concluded that

I.
Π(α + β− γ)Π(−γ)

Π(α− γ)Π(β− γ)
· F(α, β, γ, x) can be expressed by

Π(α + β− γ)Π(−γ)

Π(α− γ)Π(β− γ)
· X +

Π(α + β− γ)Π(−γ)Π(γ− 1)
Π(α− 1)Π(β− 1)Π(α− γ)Π(β− γ)

∑
{

Π(a + k + t)Π(β + k + t)
π(k + t + 1)Π(γ + k + t)

xk+1+t
}
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if for t all values 0, 1, 2, 3 etc. to infinity are understood to be substituted.
In like manner F(α + 1− γ, β + 1− γ, 2− γ, x) can be expressed by

Π(1− γ)

Π(α− γ)Π(β− γ) ∑
(

Π(α− γ + t)Π(β− γ + t)
ΠlΠ(1− γ + t

xt
)

having determined t exactly as before, and hence, since Π(1− γ) = (1−
γ)Π(−γ) and Π(γ− 1) = −(1− γ)Π(γ− 2), it is plain that

II.
Π(α + β− γ)π(γ− 2)

Π(α− 1)Π(β− 1)
x1−γF(α + 1− γ, β + 1− γ, 2− γ, x)

= − Π(α + β− γ)Π(−γ)Π(γ− t)
Π(α− 1)Π(β− 1)Π(α− γ)Π(β− γ)

∑
{

Π(α− γ + t)Π(β− γ + t)
Πtπ(1− γ + t)x1+t−γ

}
Hence formula 86 can also be exhibited this way:

F(α, β, α + β + 1− γ, 1− x)

=
Π(α + β− γ)Π(−γ)

Π(α− γ)Π(β− γ)
X +

Π(α + β− γ)Π(−γ)Π(γ− 1)
Π(α− 1)Π(β− 1)Π(α− γ)Π(β− γ)

×∑
{

Π(α + k + l)Π(β + k + z)
Π(k + t + 1)Π(γ + k + t)

xk+1+t − Π(α− γ + t)Π(β− γ + t)
Π(t− γ + t)Πt

x1+t−γ

}
This expression shows clearly, that the single differences, which are contained
in the sum ∑, become = 0, if one takes γ = −k, but since here at the same
time Π(γ− 1) is an infinitely large quantity, the product is understood to be
able to become finite. To express its value by finite quantities, first let us set
γ + k = ω, whence

Π(γ− 1) · γ · (γ + 1)(γ + 2) · · · (γ + k− 1)ω = Πω

or

Π(γ− 1) =
Πω

ω(ω− 1)(ω− 2) · · · (ω− k)

Therefore, the sum in discussion is changed in such a way that we see

1
ω

{
Π(α− γ + t + ω)(Π(β− γ + t + ω)

Π(t− γ + 1 + ω)Π(t + ω)
x1+t−γ+ω − Π(α− γ + t)Π(β− γ + t)

Π(t− γ + 1)Πt
x1+t−γ

}
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if ω decreases to zero. But by known principles hence it results

−dU
dγ

if, for the sake of brevity, we set

Π(α− γ + t)Π(β− γ + t)
Π(t− γ + 1)Π(t− k− γ)

x1+t−γ = U

and consider only γ as a variable. But hence

dU
Udγ

= −Ψ(α− γ + t)−Ψ(β− γ + t) + Ψ(t− γ + 1) + Ψ(t− k− γ)− log x

Hence for γ = −k one concludes

[88] F(α, β, α + β + 1 + k, 1− x)

=
Π(α + β + k)Πk

Π(α + k)Π(β + k)
X

+
Π(α + β + k)Πk

Π(α− 1)Π(β− 1)Π(α + k)Π(β + k)(−1)(−2) · · · (−k)

{
(log x

+Ψ(α + t + k) + ψ(β + t + k)−Ψ(t + k + 1)−Ψt)
Π(α + t + k)Π(β + t + k)

Π(t + k + 1)Πt
x1+t+k

}
=

Π(α + β + k)Πk
Π(α + k)Π(β + k)

X± Π(α + β + k)x1+k

Π(α− 1)Π(β− 1)Π(k + 1)
Y

where
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Y = {log x + Ψ(α + k) + ψ(β + k)−Ψ(k + 1)−Ψ(0)} F(α + k + 1, β + k + 1, k + 2, x)

+A
(α + k + 1) · (β + k + 1)

1 · (k + 2)
x

+(A + B)
(α + k + 1) · (α + k + 2) · (β + k + 1) · (β + k + 2)

1 · 2 · 3 · (k + 2) · k + 3
xx

+(A + B + C)
(α + k + 1)(α + k + 2)(α + k + 3)(β + k + 1)(β + k + 2)(β + k + 3)

1 · 2 · 3 · (k + 2) · (k + 3) · (k + 4)
x3

+etc.

and

A =
1

α + k + 1
+

1
β + k + 1

− 1
k + 2

− 1

B =
1

α + k + 2
+

1
β + k + 2

− 1
k + 3

− 1
2

C =
1

α + k + 3
+

1
β + k + 3

− 1
k + 4

− 1
3

,

the upper or lower sign is to be taken, depending on whether k is an even or
odd number.

46.

Therefore, this way F(α, β, α + β + 1− γ, 1− x) is transformed, if γ is 0 or a
negative integer. We can treat the case γ = +1 in completely the same way,
or, for a shorter calculation, we can set k = −1 in the preceding arguments,
whence X vanishes completely and we obtain:
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[89] F(α, β, α + β, 1− x)

= − Π(α + β− 1)
Π(α− 1)Π(β− 1)

{log x + Ψ(α− 1) + Ψ(β− 1)− 2Ψ(0)} F(α, β, 1, x)

− Π(α + β− 1)
Π(α− 1)Π(β− 1)

{
A

α · β
1

x

+(A + B)
α(α + 1) · β · (β + 1)

1 · 2 · 1 · 2 xx

+(A + B + C)
α · (α + 1) · (α + 2) · β · (β + 1) · (β + 2)

1 · · · 2 · 3 · 1 · 2 · 3 x3

+etc.}

where

A =
1
α
+

1
β
− 2, B =

1
α + 1

+
1

β + 2
− 2

2
, C =

1
α + 2

+
1

β + 2
− 2

3
etc.

So, e. g., for α = 1
2 , β = 1

2 we obtain (confer for, 52, 71)

[90] F
(

1
2

,
1
2

, 1, 1− x
)

= − 1
π

log
1
16

x · F
(

1
2

,
1
2

, 1, x
)

− 1
π

{
2 · 1 · 1

2 · 2 x +

(
2 +

1
3

)
1 · 1 · 3 · 3
2 · 2 · 4 · 4 xx +

(
2 +

1
3
+

2
15

)
1 · 1 · 3 · 3 · 3 · 5 · 5 · 7 · 7

2 · 2 · 4 · 4 · 6 · 6 · 6

+

(
2 +

4
3 · 4 +

4
5 · 6 +

4
7 · 8

)
1 · 1 · 3 · 3 · 5 · 5 · 7 · 7
2 · 2 · 4 · 4 · 6 · 6 · 8 · 8 x4 + etc.

}

= −
{

log
1
16

xF
(

1
2

,
1
2

, 1, x
)
+

1
2

x +
21
64

xx +
185
768

x3 +
18655
98394

x4

+
102501
655360

x5 +
1394239
10485760

x6 + etc.
}
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Finally, it is not necessary to treat the third case, where γ is a positive integer
larger than 1, separately, since

F(α, β, α+ β+ 1− γ, 1− x) = xγ−1F(α+ 1− γ, β+ 1− γ, α+ β+ 1− γ, 1− x)

and the transformation of the series F(α+ 1−γ, β+ 1−γ, α+ β+ 1−γ, 1− x)
for γ > 1 is immediately reduced to the first case.

47.

We go over to other transformations, beginning with the substitution x = y
y−1 .

Hence dx = − dy
(y−1)2 , and hence

dP
dx

= −dP
dy

(1− y)2, differentiating again

d
dP
dx

= −(1− y)2d
dP
dy

+ 2(1− y)dP, and hence

ddP
dx2 = +(1− y)4 ddP

dy4 − 2(1− y)3 dP
dy

Having substituted these values equation 80 goes over into this one

0 = αβP + (1− y)(γ + (α + β− 1− γ)y)
dP
dy

+ (1− y)(y− yy)
ddP
dy2

But to obtain an equation similar to 80, let us set P = (1− y)µP, whence

dP
dy

= −µ(1− y)µ−1P′ + (1− y)µ dP′

dy

ddP
dy2 = (µµ− µ)(1− y)µ−2P′ − 2µ(1− y)µ−1 dP′

dy
+ (1− y)µ ddP′

dy2

Having substituted these, after division by (1− y)µ,
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0 = P′ {αβ− µ(γ + (α + β− 1γ)y) + y(µµ− µ)}

+
dP′

dy
{γ + (α + β− 1γ)y− 2µy} (1− y)

+
ddP′

dy2 {y− yy} (1− y)

Let us determine µ in such a way that the multiplicator of P′ becomes divisible
by 1− y, what will happen by setting either µ = α or µ = β. The first value
changes the preceding equation into this one

0 = α(β− γ)P′ + (γ− (γ + α + 1− β)y)
dP′

dy
+ (y− yy)

ddP′

dy2

or

0 = α(γ− β)P′ − (γ− (γ− β + α + 1)y)
dP′

dy
− (y− yy)

ddP′

dy2

which is to be satisfied in such a way that for y = 0 we have P′ = 1 and
dP′
dy = α(γ−β)

γ . But hence one deduces P′ = F(α, γ− β, γ, y) and one has

[91] F(α, β, γ, x) = (1− y)αF(α, γ− β, γ, y) = (1− x)−αF
(

α, γ− β, γ,− x
1− x

)
If we would have taken the other value β for µ, in completely the same way it
would have resulted

[92] F(α, β, γ, x) = (1− x)−βF
(

β, γ− α, γ,− x
1− x

)
which formula also follows from the preceding by permutation of the elements
α, β immediately. By means of the formula just found the values of our series
for negative values of the fourth element are always reduced to values of a
similar series for positive values of the fourth element between 0 and 1, since

F(α, β, γ,−x) = (1 + x)−αF
(

α, γ− β, γ,
x

1 + x

)
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48.

It will be worth one’s while to show how by means of the transformations
82, 91 all formulas collected in art. 5 can easily be deduced only from the
binomial theorem. For, hence formulas I-IV follow immediately. Formulas
VI-IX follow from this immediately, if ex is considered as the limit of the power(

1 + x
i

)i or
(
1− x

i

)−i, and log x as the limit of i
(

x
1
i − 1

)
, while i grows to

infinity. Further, from

cos nϕ +
√
−1 · sin nϕ = (cos ϕ +

√
−1 · sin ϕ)n

cos nϕ−
√
−1 · sin nϕ = (cos ϕ−

√
−1 · sin ϕ)n

by subtraction and addition formula XVIII and XXII and hence by formula
82 XIX and XXIII follow immediately; hence by formula 91 XVI, XVII, XX
and XXI. Setting t for nt and assuming n to be infinite, from XVI and XX
the equations XI and XII follow; but assuming n to be infinitely small, from
XVI-XVIII XIII-XV follow.

49.

From the substitution x = 1
y in the same way we find

0 = αβP− (α + β− 1− (γ− 2)y)y
dP
dy

+ (yy− y3)
ddP
dy2

Further, setting P = yµP′,

I. 0 = P′(αβ− µ(α + β− 1) + µ(γ− 2)y + (µµ− µ)(1− y))

−dP′

dy
(α + β− 1− (γ− 2)y− 2µ(1− y))y

+(yy− y3)
ddP′

dy2

For the multiplicator of P′ to become divisible by y, one has to set either µ = α

or µ = β; the first value produces

II : 0 = P′α(γ− α− 1)− dP′

dy
(β− α− 1− (γ− 2α− 2)y) + (y− yy)

ddP′

dy2
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whose particular integral becomes

P′ = F(α, α + 1− γ, α + 1− β, y)

Therefore, equation I is satisfied by the particular integral

P = yαF(α, α + 1− γ, α + 1− β, y)

and hence the other value µ = β yields another particular integral

P = yβF(β, β + 1− γ, β + 1− α, y)

whence one has the complete integral

P = AyαF(α, α + 1− γ, α + 1− β, y) + ByβF(β, β + 1− γ, β + 1− α, y)

while A, B denote constants, which are not arbitrary but completely determi-
ned, since P is not the complete integral of equation 80, but only a particular
integral. But for the determination of the values of the constants A, B not to
lead us to wrong ways, we will deduce the same equation in another way by
means of the things we just derived.
In 91 setting − x

1−x = 1− z and changing β into γ− β, γ into α + 1− β, x into
z in eq. 86, it will be concluded

(1− x)αF(α, β, γ, x) =
Π(γ− 1)Π(β− α− 1)
Π(γ− α− 1)Π(β− 1)

F(α, γ− β, α + 1− β, z)

+
Π(γ− 1)π(α− β− 1)
Π(α− 1)Π(γ− β− 1)

zβ−αF(β, γ− α, β + 1− α, z)

But by eqs. 91, 92

F(α, γ− β, α + 1− β, z) = (1− z)−αF
(

α, α + 1− γ, α + 1− β,− z
1− z

)
F(β, γ− α, β + 1− α, z) = (1− z)−βF

(
β, β + 1− γ, β + 1− α,− z

1− z

)

17



Having substituted these and having set z = 1
1−x , 1− z = − x

1−x , − z
1−z = 1

x ,
we have

[93] F(α, β, γ, x) =
Π(γ− 1)Π(β− α− 1)
Π(γ− α− 1)Π(β− 1)

(−x)−αF
(

α, α + 1− γ, α + 1− β,
1
x

)
+

Π(γ− 1)Π(α− β− 1)
Π(α− 1)Π(γ− β− 1)

(−x)−βF
(

β, β + 1− γ, β + 1− α,
1
x

)
which agrees to the equation found above, if one sets

A =
Π(γ− 1)Π(β− α− 1)
Π(γ− α− 1)Π(β− 1)

(−1)α

B =
Π(γ− 1)Π(α− β− 1)
Π(α− 1)Π(γ− β− 1)

(−1)β

where it is to be noted that

(−1)α = cos αkπ +
√
−1 · sin αkπ

(−1)β = cos βkπ +
√
−1 · sin βkπ

while k denotes an arbitrary integer number.

50.

By equation 93 the value of our function for values of the fourth element
larger than 1 is reduced to the case, where the fourth element is smaller than
1. At the same time it is plain that to negative values of the fourth element,
larger than 1, always one real value of the function F corresponds, but to the
positive values on the other hand only then one real value can correspond,
if α and β are either integers or rational fractions, whose denominators are
odd; in the remaining cases F(α, β, γ, x) admits only imaginary values for a
positive value, smaller than 1, of x.

51.

The relations among the many functions F expanded up to this point were all
linear: Now, we add another one of a different kind. Let
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P = F(α, β, γ, x)

Q = x1−γF(α + 1− γ, β + 1− γ, 2− γ, x)

R = F(α, β, α + β + 1− γ, 1− x)

so that P, Q, R are three particular integrals of equation 80, or that

I. 0 = αβP − (γ− (α + β + 1)x)
dP
dx
−(x− xx)

ddP
dx2

II. 0 = αβQ − (γ− (α + β + 1)x)
dQ
dx
−(x− xx)

ddQ
dx2

I. 0 = αβR − (γ− (α + β + 1)x)
dR
dx
−(x− xx)

ddR
dx2

Multiplying the first equation by Q, the second by P, by subtracting we find

0 = (γ− (α + β + 1)x)
QdP− PdQ

dx
+ (x− xx)

QddP− PddQ
dx2

But this equation multiplied by xγ−1(1− x)α+β−γ becomes integrable and
yields

[94] xγ(1− x)α+β+1−γ QdP− PdQ
dx

In like manner one has

[95] B = xγ(1− x)α+β+1−γ RdQ−QdR
dx

[96] C = xγ(1− x)α+β+1−γ RdP− PdR
dx

The constants A, B, C are easily determined by the following method.

For x = 0 we find P = 1; further, xγQ = xF(α + 1− γ, β + 1− γ, 2− γ, x) =
0 for x = 0; but its differential divided by dx, namely γxγ−1Q+ xγ dQ

dx , becomes
= 1; hence one concludes xγdQ

dx = 1− γ for x = 0, and hence

A = γ− 1
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But to determine B and C, let us recall the equation

R = f (α, β, γ)P + f (α + 1− γ, β + 1− γ, 2− γ)Q

which, having differentiated it, gives

dR
dx

= f (α, β, γ)
dP
dx

+ f (α + 1− γ, β + 1− γ, 2− γ)
dQ
dx

Multiplying the first by dQ
dx , the second by Q, by subtracting the resulting

equations, we find

QdR− RdQ
dx

= f (α, β, γ)
QdP− PdQ

dx
and hence

B = (1− γ) f (α, β, γ) =
Π(α + β− γ)Π(1− γ)

Π(α− γ)Π(β− γ)

Similarly, having multiplied the first equation by dP
dx , the second by P, the

subtraction gives

RdP− PdR
dx

= f (α + 1− γ, β + 1− γ, 2− γ)
QdP− PdQ

dx
and hence

C = (γ− 1) f (α + 1− γ, β + 1− γ, 2− γ) =
Π(α + β− γ)Π(γ− 1)

Π(α− 1)Π(β− 1)

If you like it more, these three equations can also be exhibited in such a way
that the function

[97]
1
γ

F(α, β, α + β + 1− γ, 1− x)F(α + 1, β + 1, γ + 1, x)

+
1

α + β + 1− γ
F(α + 1, β + 1, α + β + 2− γ, 1− x)F(α, β, γ, x)

=
Π(α + β− γ)Π(γ− 1)

ΠαΠβ
x−γ(1− x)γ−α−β−1
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52.

Denoting the function F(−α,−β, 1− γ, x) by S, it will be

0 = αβS− (1− γ + (α + β− 1)x)
dS
dx
− (x− xx)

ddS
dx2

Having combined this equation with I. of the preceding art.,

0 = αβ

(
SdP + PdS

dx

)
− (1− 2x)

dP
dx
· dS

dx
− (x− xx)

dSddP + dPddS
dx2

which is integrable and yields

Const. = αβPS− (x− xx)
dP
dx
· dS

dx
The value of the constant follows immediately from x = 0 to be = αβ. If you
prefer a finite formula, you have

[98] F(α, β, γ, x)F(−α,−β, 1− γ, x)

− αβ

γ− γγ
F(α + 1, β + 1, γ + 1, x)F(1− α, 1− β, 2− γ, x) = 1

Transforming the four functions according to formula 82 here and then writing
γ− α, γ− β for α, β, you will have

[99] (1− x)F(α, β, γ, x)F(1− α, 1− β, 1− γ, x)

− (γ− α) · (γ− β)

γ− γγ
xF(α, β, γ + 1, x)F(1− α, 1− β, 2− γ, x) = 1

CERTAIN SPECIAL THEOREMS

53.

All relations found up to this point are most general in that regard, that the
elements α, β, γ are not restricted by any conditions. But furthermore we
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find many others, which require special relations among the elements α, β,
γ: Without any doubt still many of them are hidden, and those, we will give
here, can maybe be derived from higher principles in the future.
First, in equation 80 let us x = 4y

(1+y)2 , whence

dx = dy · 4(1− y)
(1 + y)3

and hence

dP
dx

=
dP
dy
· (1 + y)3

4(1− y)

ddP
dx

= d
dP
dy
· · · (1 + y)3

4(1− y)
+

dP
dy
· (2− y)(1 + y)2

2(1− y)2 dy

ddP
dx2 =

ddP
dy2 ·

(1 + y)6

16(1− y)2 +
(2− y)(1 + y)5

8(1− y)3 · dP
dy

Hence that equation becomes

0 = αβP

−(γ(1 + y)2 − 4(α + β + 1)y)
1 + y

4(1− y)
· dP

dy

−ddP
dy2 ·

y(1 + y)2

4
− y(2− y)(1 + y)

2(1− y)
· dP

dy
or
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0 = 4αβ(1− y)P

−(γ(1 + y)2 − 4(α + β + 1)y− 2y(2− y)(1 + y))
dP
dy

−(y− yy)(1 + y)2 ddP
dy2

0 = 4αβ(1− y)P

−(1 + y)(γ− (4α + 4β− 2γ)y + (γ− 2)yy)
dP
dy

−(1 + y)2(y− yy)
ddP
dy2

Setting P = (1 + y)2αQ, hence one deduces

I. 0 = 2α(2β− γ + (2α + 1− γ)y)Q

−(γ− (4β− 2γ)y + (γ− 4α− 2)yy)
dQ
dy

−(y− yy)(1 + y)
ddQ
dy2

Now assuming that β = α + 1
2 , this equation takes on the following form

0 = 2α(2α + 1− γ)Q

−(γ− (4α + 2− γ)y)
dQ
dy

−(y− yy)
ddQ
dy2

whose integral is
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Q = F(2α, 2α + 1− γ, γ, y)

so that it results

[100] (1 + y)2αF(2α, 2α + 1− γ, γ, y) = F
(

α, α +
1
2

, γ,
4y

(1 + y)2

)
54.

If instead of the relation β = α + 1
2 we take γ = 2β, equation I of the prec. art.

becomes

0 = 2α(2α + 1− 2β)yQ

−(2β− (4α + 2− 2β)yy)
dQ
dy

−y(1− yy)
ddQ
dy2

Now, setting yy = z,

dQ
dy

= 2y
dQ
dz

ddQ
dy2 = 4yy

ddQ
dz2 +

2dQ
dz

and hence

0 = α

(
α +

1
2
− β

)
Q

−
(

β +
1
2
−
(

2α +
3
2
− β

)
z
)

dQ
dz

−(z− zz)
ddQ
dz2

since whose integral is

Q = F
(

α, α +
1
2
− β, β +

1
2

, z
)
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we have

[101] (1 + y)2αF
(

α, α +
1
2
− β, β +

1
2

, yy
)
= F

(
α, β, 2β,

4y
(1 + y)2

)
55.

Secondly, let us set x = 4y− 4yy, whence

dx = 4dy(1− 2y)

dP
dx

=
dP
dy
· 1

4(1− 2y)

ddP
dx2 =

ddP
dy2 ·

1
16(1− 2y)2 +

dP
dy
· 1

8(1− 2y)3

whence equation 80 becomes

0 = 4αβP

−(γ− (4α + 4β + 2)y + (4α + 4β + 2)yy)
1

(1− 2y)
· dP

dy

−(y− yy)
ddP
dy2

For it to be possible to cancel the fraction in the second terms, one has to set
γ = α + β + 1

2 , whence it will result

0 = 4αβP

−
(

α + β +
1
2
− (2α + 2β + 1)y

)
dP
dy

−(y− yy)
ddP
dy2

whose integral is
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P = F
(

2α, 2β, α + β +
1
2

, y
)

whence we have

[102] F
(

α, β, α + β +
1
2

, 4y− 4yy
)
= F

(
2α, 2β, α + β +

1
2

, y
)

If we would change y into 1− y in this equation, hence it would result

F
(

α, β, α + β +
1
2

, 4y− 4yy
)
= F

(
2α, 2β, α + β +

1
2

, 1− y
)

whence this paradox seems to follow

F
(

2α, 2β, α + β +
1
2

, y
)
= F

(
2α, 2β, α + β +

1
2

, 1− y
)

which equation is certainly false. To resolve this paradox, one has to remember
that one has to distinguish the two meanings of the letter F carefully, namely
that it either represents a function, whose nature is expressed by the differential
equation 80, or only the sum of the series. The second, as long as the fourth
element lies between −1 and 1, will always exhibit a completely determined
quantity, or one has to be careful not to exceed these limits, since otherwise
no meaning remains at all. The first meaning on the other hand represents
a general function, which is certainly always changed according to the law
of continuity, if the fourth element is changed in a continuous flux, whether
you attribute real or imaginary values to it, if you just always avoid 0 and 1.
Therefore, it is plain, that in the second sense for equal values of the fourth
element (having passed through imaginary quantities) the function can take on
different values, from which the one, which the series F represents, is just one
of possibly many, and hence it is not contradictory, that, while a certain value of
the function F

(
2α, 2β, α + β + 1

2 , 4y− 4yy
)

is equal to F
(
2α, 2β, α + β + 1

2 , y
)
,

another value becomes = F
(
2α, 2β, α + β + 1

2 , 1− y
)

and it would be as absurd
to conclude the equality of these values as if you would conclude the 30◦ =
150◦ from arcsin 1

2 = 30◦ and arcsin 1
2 = 150◦ - If we assume the characteristic

F in a less general meaning, of course, that it only represents the sum of the
series F, the arguments, by which we found equation 102, necessarily yield
that y can only grow from 0 so far until it will be x = 1, i. e. until y = 1

2 . But in
this point the continuity of the series P = F(α, β, α + β + 1

2 , 4y− 4yy) would be
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interrupted, since dP
dx obviously instantly jumps from a (finite) positive value

to a negative value. Therefore, in this meaning equation 102 does not admit

an extension beyond the limits y = 1
2 −

√
1
2 to y = 1

2 . If you prefer, you can
exhibit the same equation also this way

[103] F
(

α, β, α + β +
1
2

, x
)
= F

(
2α, 2β, α + β +

1
2

,
1−
√

1− x
2

)

or this way

[104] F
(

α, β, α + β +
1
2

, 1− x
)
= F

(
2α, 2β, α + β +

1
2

,
1−
√

x
2

)
whence it follows as a corollary

[105] F
(

2α, 2β, α + β +
1
2

,
1
2

)
=

Π
(
α + β− 1

2

)
Π
(
− 1

2

)
Π
(
α− 1

2

)
Π
(

β− 1
2

)
=

Π
(
α + β− 1

2

)√
π

Π
(
α− 1

2

)
Π
(

β− 1
2

)
56.

From the application of formula 87 to equation 104 it follows

[106] F
(

2α, 2β, α + β +
1
2

,
1−
√

x
2

)
= A

(
α, β,

1
2

, x
)
+ B
√

x · F
(

α +
1
2

, β +
1
2

,
3
2

, x
)

whence it is plain that the series

F
(

2α, 2β, α + β +
1
2

,
1− t

2

)
can be exhibited by the series

A+ Bt+ A
α · β
1 · 1

2

· tt+ B
(
α + 1

2

)
·
(

β + 1
2

)
1 · 3

2

t3 + A+
α · (α + 1) · β · (β + 1)

1 · 2 · 1
2 ·

3
2

t4 + etc.
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for the sake of brevity setting

A =
Π
(
α + β− 1

2

)
Π
(
− 1

2

)
Π
(
α− 1

2

)
Π
(

β− 1
2

) , B =
Π
(
α + β− 1

2

)
Π
(
− 3

2

)
Π (α− 1)Π (β− 1)

Hence it is possible to conclude that

[107] F
(

2α, 2β, α + β +
1
2

,
1 +
√

x
2

)
= A

(
α, β,

1
2

, x
)
+ B
√

x · F
(

α +
1
2

, β +
1
2

,
3
2

, x
)

Hence, if this conclusion does not seem legitimate for anyone, (to deduce
which would without a doubt not be difficult) we could get to the same
equation in the following way. From equation 87

F
(

2α, 2β, α + β +
1
2

,
1 +
√

x
2

)
= CF

(
2α, 2β, α + β +

1
2

,
1−
√

x
2

)
+D

(
1− x

4

) 1
2−α−β

F
(

1− 2α, 1− 2β,
3
2
− α− β,

1−
√

x
2

)
for the sake of brevity setting

C =
Π
(
α + β− 1

2

)
Π
(
− 1

2 − α− β
)

Π
(
α− β− 1

2

)
Π
(

β− α− 1
2

) , D =
Π
(
α + β− 1

2

)
Π
(
α + β− 3

2

)
Π (2α− 1)Π (2β− 1)

But from equation 104 one easily deduces

F(
(

1− 2α, 1− 2β,
3
2
− α− β,

1−
√

x
2

)
= F

(
1
2
− α,

1
2
− β,

3
2
− α− β, 1− x

)

= EF
(

1
2
− α,

1
2
− β,

1
2

, x
)
+ G
√

x · F
(

1− α, 1− β,
3
2

, x
)

for the sake of brevity setting

E =
Π
( 1

2 − α− β
)

Π
(
− 1

2

)
Π (−α)Π (−β)

, G =
Π
( 1

2 − α− β
)

Π
(
− 3

2

)
Π
(
− 1

2 − α
)

Π
(
− 1

2 − β
)

Hence by equation 82 it follows again
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F
(

1− 2α, 1− 2β,
3
2
− α− β,

1−
√

x
2

)
E(1− x)α+β− 1

2 F
(

α, β,
1
2

, x
)
+ G
√

x · (1− x)α+β− 1
2 F
(

α +
1
2

, β +
1
2

,
3
2

, x
)

Having substituted these, setting

AC + DE22α+2β−1 = M, BC + DG22α+2β−1 = N

one concludes

F
(

2α, 2β, α + β +
1
2

,
1 +
√

x
2

)
= MF

(
α, β,

1
2

, x
)
+ N
√

x · F
(

α +
1
2

, β +
1
2

,
3
2

, x
)

whose form agrees with equation 107. We certainly could derive M = A,
N = −B from the nature of the function Π only, since by eqs. 55, 56 it is easily
demonstrated to be

C =
cos(α− β)π

cos(α + β)π
,

DE22α+2β−1

A
= −2 sin απ sin βπ

cos(α + β)π
,

DG22α+2β−1

B
= −2 cos απ cos βπ

cos(α + β)π

but this work is not even necessary. For, setting x = 0, it is plain, that is has to
be

M = F
(

2α, 2β, α + β +
1
2

,
1
2

)
= A

but differentiating that equation it results

x−
1
2

αβ

α + β + 1
2

F
(

2α, 2β + 1, α + β +
3
2

,
1 +
√

x
2

)

= 2αβMF
(

α + 1, β + 1,
3
2

, x
)

+
2
3

(
α +

1
2

)(
β +

1
2

)
N
√

x · F
(

α +
3
2

, β +
3
2

,
5
2

, x
)
+

1
2

Nx−
1
2 F
(

α +
1
2

, β +
1
2

,
3
2

, x
)

whence setting x = 0 it results
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N =
2αβ

α + β + 1
2

F
(

2α + 1, 2β + 1, α + β +
3
2

,
1
2

)

=
2αβ

α + β + 1
2

·
Π
(
α + β + 1

2

)
Π
(
− 1

2

)
ΠαΠβ

=
Π
(
α + β− 1

2

)
Π
(
− 1

2

)
Π(α− 1)Π(β− 1)

= B

57.

From the combination of the equations 106, 107 we therefore have

[108] 2AF
(

α, β,
1
2

, x
)

= F
(

2α, 2β, α + β +
1
2

,
1−
√

x
2

)
+ F

(
2α, 2β, α + β +

1
2

,
1 +
√

x
2

)
[109] 2B

√
x · F

(
α +

1
2

, β +
1
2

,
3
2

, x
)

= F
(

2α, 2β, α + β +
1
2

,
1−
√

x
2

)
− F

(
2α, 2β, α + β +

1
2

,
1 +
√

x
2

)
In equation 109 changing α into α− 1

2 , β into β− 1
2 , you will easily see, that

hence it results

[110]

(
α− 1

2

)
·
(

β− 1
2

)
α + β− 1

2

A
√

x · F
(

α, β,
3
2

, x
)

= F
(

2α− 1, 2β− 1, α + β− 1
2

,
1 +
√

x
2

)
− F

(
2α− 1, 2β− 1, α + β− 1

2
,

1−
√

x
2

)
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